В эвм используется система счисления. Представление информации в эвм. Принципы строения и функционирования ЭВМ Джона фон Неймана

Позиционные системы счисления позволяют записывать числа. Элементами ПСС являются символы. Например, в десятичной системе счисления используются символы 0, 1, … , 9. Пусть B основание ПСС, т.е. число, равное количеству символов. Для десятичной СС. В ПСС правильная десятичная дробь представляется в виде

где и - число знаков до и после запятой соответственно.

Пример .

Кроме десятичной применяются двоичная, восьмеричная и шестнадцатеричная СС. В двоичной СС используются символы и, в восьмеричной - , в шестнадцатеричной - .

Пример .

Представление числовой информации в ЭВМ

Для представления чисел в ЭВМ используется двоичная система счисления. Само число может представляться в различных форматах: как натуральное, как целое, с фиксированной запятой, с плавающей запятой, в двоично-десятичном формате и т.д.

Единицы измерения данных

В основу единиц измерения объема данных положена двоичная система счисления.

Единицы измерения данных. Числа в ЭВМ передаются по проводам (шинам) или хранятся в ячейках памяти. На проводе может быть либо нулевой либо высокий потенциал, а ячейка памяти может находиться в одном из двух устойчивых состояниях. Аналогом этих состояний является двоичный разряд. Одному двоичному разряду присвоили новую единицу данных, которую назвали битом .

Остальные внесистемные единицы представлены в табл.

Таблица - Внесистемные единицы измерения объема данных

Представление символьной информации в ЭВМ. Для представления символьной информации в памяти компьютера используется ASCII (American Standard Cods for Information Interchange). Этот код состоит из 7 бит. С его помощью можно закодировать символов. Кодировка символов осуществляется числами натурального ряда от 0 до 127. Каждому символу соответствует свое число. Первые значения кодов от 0 до 31 используют для служебных символов. Если эти коды используются в символьном тексте программы, то они на экране не отображаются и считаются пробелами. Потом следуют знаки препинания, специальные символы и знаки операций, числа и т.д. Заглавные буквы латинского алфавита начинаются с 65 и заканчиваются 90, а строчные - с 97 по 122. Если под код символа отводится 8 бит, то еще 128 чисел могут быть использованы для кодирования, например, русского алфавита.

В ОС Windows 2000 используется универсальная система кодирования UNICODE символов. Для кодирования символов используется 16 двоичных разрядов. В эту систему кодирования можно поместить различных символов, что достаточно для размещения символов основных языков планеты.

Представление логической информации в ЭВМ. В Паскале код символа возвращается функцией ord. Под логический тип отводят 1 бит: ord (false) =0, ord(true) =1.

Поля переменной длины имеют размер от 0 до 256 байт.

Кодирование графических данных. Изображение на экране монитора формируется системой светящихся точек. Она называется растром . Каждая точка характеризуется координатами, цветом и яркостью. Для черно-белых изображений общепринята градация 256 оттенков серого цвета, для кодировки которой используется 1 байт.

Считается, что любой цвет можно получить смешением красного (Red), зеленого (Green) и голубого (Blue). Такой способ получения цвета называется RGB. Если для каждого цвета используется 8 бит для градации его интенсивности, то для задания цвета одной точки потребуется 24 бит, позволяющих получить 2 24 = 16777216 различных цветов. Это соответствует способности человеческого глаза различать цвета, поэтому такой способ представления графической информации называется полноцветным (True Color ).

Если при кодировке цвета используется 16 разрядов, то способ называется High Color .

Если при кодировании цвета используют 8 бит, то метод кодирования называется индексным. Каждому номеру (индексу) ставится в соответствие свой образец цвета, который размещается в справочной таблице - палитре .

Кодировка звуковой информации. При воспроизведении звуков используется метод таблично-волнового синтеза. В специальных таблицах собраны в числовом виде основные параметры звучания всех основных инструментов.

Понятие программного обеспечения (ПО). Программные продукты условно разделяются на три класса:

  • - системное программное обеспечение;
  • - прикладные программы;
  • - инструментарий технологии программирования.

Системное программное обеспечение обеспечивает эффективную и надежную работу компьютера, создает эффективную операционную среду выполнения других программ, проводит диагностику аппаратуры, копирует, восстанавливает и архивирует файлы, обеспечивает интерфейс оператора.

К наиболее распространенным операционным системам относятся MS DOS, Windows 95, OS / 2, NetWare, Windows NT, Unix. В состав системного входят базовое и сервисное программное обеспечение. Базовое программное обеспечение включает в себя операционные систему , оболочку и сетевую систему . Сервисное программное обеспечение расширяет возможности базового и обеспечивает диагностику работы компьютера, вирусную защиту, архивацию файлов, обслуживание дисков и сети.

Операционные оболочки это программы, облегчающие общение пользователя с компьютером. Оболочки могут быть текстовые и графические. К популярным текстовым оболочкам операционной системы MS DOS относятся Norton Commander 5.0 (фирма Symantec), XTree Gold 4.0, Norton Navigator и др. Наиболее популярны графические оболочки Windows.

Программы, входящие в состав сервисного программного обеспечения называются утилитами, например Norton Utilities (корпорация Symantec).

К пакетам прикладных программ относят проблемно-ориентированные, автоматизированного проектирования, общего назначения, интегрированные пакеты (Microsoft Office), офисные, настольные издательские системы, программные средства мультимедиа. Проблемно-ориентированные включают в себя ППП автоматизированного бухгалтерского учета, финансовой деятельности, кадрового учета, управления материальными запасами и производством, банковские информационные системы и т.д. К прикладным программам общего назначения относят СУБД, текстовые и табличные процессоры, средства презентационной графики. К офисным ППП относят органайзеры, программы-переводчики, электронная почта.

Как известно компьютеры предназначены для обработки информации и являются частным, но наиболее распространенным видом цифровых автоматов.

Функциональная и структурная организация цифровых вычислительных машин базируется на определенных принципах, составляющих методологическую основу цифровой вычислительной техники. В основе функциональной организации цифровых вычислительных машин лежит принцип программного управления и двоичного кодирования информации. Принцип программного управления может быть реализован системами с различной структурой, отличающимися функциональными свойствами и производительностью.

Для успешного изучения общих принципов обработки цифровой информации рационально, по возможности максимально, отвлечься от реального аппаратного обеспечения компьютера и рассматривать компьютер как некоторый абстрактный цифровой автомат, предназначенный для обработки информации, представленной в цифровой форме разработано данное методическое указание.

Настоящее методическое указание предназначено для студентов обучающихся по специальности «Информатика и информационные технологии» 5521900, написано в соответствии с учебной программой к трем практическим занятиям по курсу «Информационные основы вычислительных систем».

Представление информации в эвм.

Любая информация представляется в ЭВМ в виде чисел и располагается в оперативной памяти, так происходит потому, что цифровую информацию очень удобно кодировать, а значит, ее удобно хранить и обрабатывать.

За единицу представления информации в ЭВМ принимают один бит (от binary digit). Бит может принимать значения 0 или 1.

Бит – очень маленькая единица информации, она удобна для хранения информации в компьютере, но неудобна для ее обработки.

Обработкой информации в компьютере занимается специальная микросхема – процессор, который может одновременно обрабатывать группу битов. Поэтому за единицу обработки или передачи информации принимается один байт, который представляет собой последовательность из восьми битов. Байты могут объединяться по два, четыре, восемь байтов и образовывать неполное стандартное, длинное слово (ячейка) соответственно. Каждая ячейка может содержать число или команду, записанных с помощью единиц и нулей. Способ представления чисел посредством числовых знаков (цифр) называют системой счисления (СС). Правила записи и действий над числами в СС, используемых в цифровой вычислительной технике, определяют арифметические основы цифровых ЭВМ.

Системы счисления.

В ЭВМ находят широкое применение системы счисления с основанием, являющимся целой степенью числа 2, т.е. двоичная, восьмеричная и шестнадцатеричная.

Для записи двоичных чисел используются две цифры: 0 и 1. Сложение и умножение выполняются по следующим правилам:

Действия над многозначными числами выполняются по принципу поразрядного сложения и умножения по этим таблицам.

Двоичная система счисления позиционная, также как и восьмеричная, шестнадцатеричная, т.е. значение цифры зависит от занимаемого ею положения. Для записи чисел в восьмеричной системе используют 8 цифр: 0,1,2,3.4,5,6,7.

Действия над ними, также определяются таблицами сложения и умножения. Для записи чисел в шестнадцатеричной системе используют шестнадцать цифр: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Изображение целых десятичных чисел в различных системах показано в таблице 1.1.

Таблица 1.1

десятичное

восьмеричное

шестнадцатеричное

двоичное

Итак. в двоичной системе (основание системы 10 2 =2 10) младший разряд это разряд единиц, а каждый следующий в 10 2 раз больше, т.е. если говорить о десятичном эквиваленте в 2 10 раза больше. Проверим результат примера 3 исходя из предыдущих соображения: в младшем разряде одна единице + в следующем разряде: одна двойка + в следующем одна четвертка + в следующем одна восьмерка, следовательно, число 1111 2 =

1 10 +2 10 +4 10 +8 10 =15 10 все.

Разберем пример 4: 10101 2: 11=111

10101 2 = 116 + 08 +402+1=21 10

11 2 =1+2=3 10 .

Следовательно, мы делили 21 на 3, записанных в двоичной системе, в результате получим 111 2 =14+21 +1=7, т.е. действие выполнено верно.

Любое число А=а n a n -1 …..a 1 a 0 , записанное в позиционной системе с основанием q может быть предоставлено в виде суммы.

Например:

162 10 =110 2 10 +610 10 +2,

AB1 16 =A10 10 2 +B10 16 +1

73 8 =710 8 +3

где q – основание системы счисления (оно во всех системах представляется как 10)
- цифры этой системы счисления.

Принцип позиционности положен в основу правила перевода чисел из одной системы в другую. При этом надо учесть, что числу 10 2 в двоичной системе соответствует число 2 10 в десятичной (10 2 =2 10). Аналогично 10 8 =8 10 , 10 16 =16 10 .

Например, числа: 25,03 8 ; 18,6 10 ; 101,10 2 ; А9В 16 можно представить в виде разложения, а затем перевести в десятичную систему так:

Перевод из восьмеричной и шестнадцатеричной систем в двоичную и обратно заключается в простой замене цифр тремя (тирада) или четырьмя (тетрада) двоичными знаками. Именно поэтому сначала восьмеричная, а потом и шестнадцатеричная С.С. используются как промежуточная между нашей десятичной и машинной двоичной С.С.

Пример 1.
восьмеричное число

шестнадцатеричное число

От того, какая система счисления будет использована в ЭВМ, зависят скорость вычислений, емкость памяти, сложность алгоритмов выполнения арифметических операций.

Дело в том, что для физического представления (изображения) чисел необходимы элементы, способные находиться в одном из нескольких устойчивых состояний. Число этих состояний должно быть равно основанию используемой системы счисления. Тогда каждое состояние будет представлять соответствующую цифру из алфавита данной системы счисления.

Десятичная система счисления, привычная для нас, не является наилучшей для использования в ЭВМ. Для изображения любого числа в десятичной системе счисления требуется десять различных символов. При реализации в ЭВМ этой системы счисления необходимы функциональные элементы, имеющие ровно десять устойчивых состояний, каждое из которых ставится в соответствие определенной цифре. Так, в арифмометрах используются вращающиеся шестеренки, для которых фиксируется десять устойчивых положений. Но арифмометр и другие подобные механические устройства имеют серьезный недостаток - низкое быстродействие.

Создание электронных функциональных элементов, имеющих много устойчивых состояний, затруднено. Наиболее простыми с точки зрения технической реализации являются так называемые двухпозиционные элементы, способные находиться в одном из двух устойчивых состояний, например:

· электромагнитное реле замкнуто или разомкнуто;

· ферромагнитная поверхность намагничена или размагничена;

· электронная вакуумная лампа (для первых ЭВМ) включена или выключена;

· магнитный сердечник намагничен в некотором направлении или в противоположном ему;

· транзисторный ключ находится в проводящем или запертом состоянии;

· участок поверхности магнитного носителя информации намагничен или размагничен;

· участок поверхности лазерного диска отражает или не отражает и т.д.

Одно из этих устойчивых состояний может представляться цифрой 0, другое - цифрой 1. С двоичной системой связаны и другие существенные преимущества. Она обеспечивает максимальную помехоустойчивость в процессе передачи информации как между отдельными узлами автоматического устройства, так и на большие расстояния. В ней предельно просто выполняются арифметические действия и возможно применение аппарата булевой алгебры для выполнения логических преобразований информации.

Благодаря таким особенностям двоичная система стала стандартом при построении ЭВМ.

Широкое применение в ЭВМ нашли также восьмеричная и шестнадцатеричная системы счисления. Обмен информацией между устройствами большинства ЭВМ осуществляется путем передачи двоичных слов. Пользоваться такими словами из-за их большой длины и зрительной однородности человеку неудобно. Поэтому специалисты (программисты, инженеры) как на этапах составления несложных программ для микроЭВМ, их отладки, ручного ввода-вывода данных, так и на этапах разработки, создания, настройки вычислительных систем заменяют коды машинных команд, адреса и операнды на эквивалентные им величины в восьмеричной или шестнадцатеричной системе счисления. В результате длина исходного слова сокращается в 3 или 4 раза соответственно. Это делает информацию более удобной для рассмотрения и анализа. Таким образом, восьмеричная и шестнадцатеричная системы счисления выступают в качестве простейшего языка общения человека с ЭВМ, достаточно близкого как к привычной для человека десятичной системе счисления, так и к двоичному "языку" машины.

В ЭВМ используется только двоичная система счисления. Вся логика основана на принципе сигнал есть - 1,сигнала нет - 0. Все остальное это представление чисел.
Способы быстрого преревода:
из двоичной в шестнодцатиричную:
Разбиваешь двоичное число на отрезки по четыре бита и
0000 - 0h
0001 - 1h
0010 - 2h
0011 - 3h
0100 - 4h
0101 - 5h
0110 - 6h
0111 - 7h
1000 - 8h
1001 - 9h
1010 - Ah
1011 - Bh
1100 - Ch
1101 - Dh
1110 - Eh
1111 - Fh
таким образом твое число в 16-ричной
1001 0101 0110 0111 - 9567h
Ну а для восьмиричной сообразишь сам.

Ответ: 75 10 = 1 001 011 2 = 113 8 = 4B 16 .

3. Системы счисления, используемые в ЭВМ. Перевод из двоичной, восьмеричной и шестнадцатеричной в десятичную систему счисления.

4.Тенденции развития вычислительной техники

По мнению специалистов, в первом десятилетии XXI в. будут повышаться значимость программного обеспечения, возрастание проблем его совместимости и обеспечения безопасности.

Среди операционных систем дальнейшее развитие получат системы Linux и Windows. С точки зрения конечного пользователя, уже в ближайшие годы должны произойти серьезные изменения в стиле его общения с компьютером. Во-первых, будет шире использоваться графический ввод данных, в том числе в режиме автоматического распознавания рукописного ввода. Во-вторых, будет использоваться голосовой ввод - сначала для управления командами, а потом будет осваиваться и автоматическая оцифровка речи. Для решения вышеуказанных задач будут разрабатываться соответствующие внешние устройства.

Огромное значение в будущем будут иметь работы в области интеллектуальной обработки неструктурированных данных, в первую очередь текстов, а затем графики, звука, видео.

Одним из наиболее перспективных направлений развития вычислительной техники является реализация концепции сетевых вычислений, использующая идею привлечения для вычислений свободных ресурсов компьютеров. Эта концепция получила название Grid и включает в себя пять ключевых пунктов:

Применение открытых стандартов;

Объединение разнородных систем;

Совместное использование данных;

Динамическое выделение ресурсов;

Объединение вычислительных сетей множества предприятий и организаций.

Развитие ЭВМ будет идти по пути создания оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой, представляющих собой распределенную сеть большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Дальнейшее развитие получат переносные персональные компьютеры с беспроводным подключением к глобальной сети Интернет.

Следует отметить, что развитие вычислительной техники всецело зависит от тенденций развития мировой экономической системы.

Лекция № 6 История развития вычислительной техники

Лекция № 3 Поколения и классификация ЭВМ

1.Поколения вычислительной техники

Выделяют пять поколений ЭВМ.

Первое поколение (1945-1954) характеризуется появлением техники на электронных лампах. Это эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и создавались с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютеров были такими, что они нередко требовали отдельных зданий.

Основоположниками компьютерной науки по праву считаются Клод Шеннон - создатель теории информации, Алан Тьюринг - математик, разработавший теорию программ и алгоритмов, и Джон фон Нейман - автор конструкции вычислительных устройств, которая до настоящего времени лежит в основе большинства компьютеров. В те же годы возникла еще одна новая наука, связанная с информатикой, - кибернетика - наука об управлении как одном из основных информационных процессов. Основателем кибернетики является американский математик Норберт Винер.

Во втором поколении (1955-1964) вместо электронных ламп использовались транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и барабаны - прототипы современных жестких дисков. Все это позволило сократить габариты и стоимость компьютеров, которые тогда впервые стали производиться на продажу.

Но главные достижения этой эпохи относятся к области программ. Во втором поколении впервые появилось то, что сегодня называется операционной системой. Тогда же были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Два этих важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров.

При этом расширялась сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике, поскольку компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже начали компьютеризировать свою бухгалтерию, предвосхищая этот процесс на двадцать лет.

В третьем поколении (1965-1974) впервые стали использоваться интегральные схемы - целые устройства и узлы из десятков и сотен транзисторов, выполненные на одном кристалле полупроводника (микросхемы). В то же время появилась полупроводниковая память, которая и до настоящего времени используется в персональных компьютерах в качестве оперативной.

В те годы производство компьютеров приняло промышленный размах. Фирма IBM первой реализовала серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM, на основе которого в СССР была разработана серия ЕС ЭВМ. Еще в начале 1960-х гг. появились первые миникомпьютеры - маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Мини-компьютеры были первым шагом на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 1970-х гг.

Между тем количество элементов и соединений, умещающихся в одной микросхеме, постоянно росло, и в 1970-е гг. интегральные схемы содержали уже тысячи транзисторов.

В 1971 г. фирма Intel выпустила первый микропроцессор, который предназначался для только появившихся настольных калькуляторов. Это изобретение произвело в следующем десятилетии настоящую революцию. Микропроцессор является главной составляющей частью современного персонального компьютера.

На рубеже 1960 -70-х гг. (1969) появилась первая глобальная компьютерная сеть ARPA, прототип современной сети Интернет. В том же 1969 г. одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое главенствующее положение.

Четвертое поколение (1975 -1985) характеризуется небольшим количеством принципиальных новаций в компьютерной науке. Прогресс шел в основном по пути развития того, что уже изобретено и придумано, прежде всего, за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.

Самая главная новация четвертого поколения - это появление в начале 1980-х гг. персональных компьютеров. Благодаря им вычислительная техника становится по-настоящему массовой и общедоступной. Несмотря на то, что персональные и мини-компьютеры по-прежнему по вычислительной мощности отстают от солидных машин, большая часть новшеств, таких как графический пользовательский интерфейс, новые периферийные устройства, глобальные сети, связана с появлением и развитием именно этой техники.

Большие компьютеры и суперкомпьютеры, конечно же, продолжают развиваться. Но теперь они уже не доминируют в компьютерном мире, как было раньше.

Некоторые характеристики вычислительной техники четырех поколений приведены в

Характеристика

Положение

первое

второе

третье

четвёртое

Основной элемент

Электронная лампа

Транзистор

Интегральная схема

Большая интегральная схема

Количество ЭВМ в мире, шт.

Десятки тысяч

Миллионы

Размер ЭВМ

Значительно меньший

Десятки тысяч

Микро ЭВМ

Быстродействие (условное) операций/ с

Несколько единиц

Несколько десятков единиц

Несколько тысяч единиц

Несколько десятков тысяч единиц

Носитель информации

Перфокарта, перфолента

Магнитная лента

Гибкий диск

Пятое поколение (1986 г. до настоящего времени) в значительной мере определяется результатами работы японского Комитета научных исследований в области ЭВМ, опубликованными в 1981г. Согласно этому проекту ЭВМ и вычислительные системы пятого поколения кроме высокой производительности и надежности при более низкой стоимости с помощью новейших технологий должны удовлетворять следующим качественно новым функциональным требованиям:

    обеспечить простоту применения ЭВМ путем реализации систем ввода/вывода информации голосом, а также диалоговой обработки информации с использованием естественных языков;

    обеспечить возможность обучаемости, ассоциативных построений и логических выводов;

    упростить процесс создания программных средств путем автоматизации синтеза программ по спецификациям исходных требований на естественных языках;

    улучшить основные характеристики и эксплуатационные качества вычислительной техники для удовлетворения различных социальных задач, улучшить соотношения затрат и результатов, быстродействия, легкости, компактности ЭВМ;

    обеспечить разнообразие вычислительной техники, высокую адаптируемость к приложениям и надежность в эксплуатации.

В настоящее время ведутся интенсивные работы по созданию оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой, представляющих собой распределенную сеть большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

2.Классификация электронно-вычислительных машин

ЭВМ можно классифицировать по ряду признаков:

    По принципу действия.

    По назначению ЭВМ.

    По размерам и функциональным возможностям.

По принципу действия ЭВМ :

    АВМ – аналоговые вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения);

    ЦВМ – цифровые вычислительные машины дискретного действия, работают с информацией, представленной в дискретной (цифровой) форме;

    ГВМ – гибридные вычислительные машины комбинированного действия, работают с информацией, представленной как в цифровой, так и аналоговой форме. ГВМ совмещают в себе достоинства АВМ и ЦВМ. Их целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

По назначению ЭВМ :

    универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных;

    проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими процессами;

    специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций.

По размерам и функциональным :

    сверхмалые (микро ЭВМ ) обязаны своим появлением изобретению микропроцессора, наличие которого первоначально служило определяющим признаком микро ЭВМ, хотя сейчас микропроцессоры используются во всех без исключения классах ЭВМ;

    малые (мини-ЭВМ) используются чаще всего для управления технологическими процессами;

    большие ЭВМ чаще всего называют мэйнфреймами (mainframe). Основные направления эффективного применения мэйнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами;

    сверхбольшие (суперЭВМ) – мощные многопроцессорные вычислительные машины быстродействием десятки миллиардов операций в секунду и объемом оперативной памяти десятки Гбайт.

3.Принципы строения и функционирования ЭВМ Джона фон Неймана

Большинство современных ЭВМ функционирует на основе принципов, сформулированных в 1945 г. американским ученым венгерского происхождения Джоном фон Нейманом.

1. Принцип двоичного кодирования . Согласно этому, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных символов (сигналов).

2. Принцип программного управления . Компьютерная программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности.

3. Принцип однородности памяти . Программы и данные хранятся в одной и той же памяти, поэтому ЭВМ не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.

4. Принцип адресности . Структурно основная память состоит из пронумерованных ячеек, любая из которых доступна процессору в любой момент времени.

Согласно фон Нейману, ЭВМ состоит из следующих основных блоков:

1) устройство ввода/вывода информации;

2) память ЭВМ;

3) процессор, включающее устройство управления (УУ) и арифметико-логическое устройство (АЛУ).

В ходе работы ЭВМ информация через устройства ввода попадает в память. Процессор извлекает из памяти обрабатываемую информацию, работает с ней и помещает в нее результаты обработки. Полученные результаты через устройства вывода сообщаются человеку.

Память ЭВМ состоит из двух видов памяти: внутренней (оперативной ) и внешней (долговременной ).

Оперативная память – это электронное устройство, которое хранит информацию, пока питается электроэнергией. Внешняя память – это различные магнитные носители (ленты, диски), оптические диски.

За прошедшие десятилетия процесс совершенствования ЭВМ шел в рамках приведенной обобщенной структуры.

4.Классификация персональных компьютеров

Как указывалось выше, персональный компьютер (ПК) представляет собой универсальную однопользовательскую микро ЭВМ.

Персональный компьютер в первую очередь является общедоступной ЭВМ и обладает определенной универсальностью.

Для удовлетворения потребностей пользователя ПК должен обладать следующими свойствами:

    иметь относительно небольшую стоимость, быть доступным для индивидуального покупателя;

    обеспечивать автономность эксплуатации без специальных требований к условиям окружающей среды;

    обеспечивать гибкость архитектуры, делающей возможным ее перестройку для разнообразных применений в сфере управления, науки, образования, в быту;

    операционная система и программное обеспечение должны быть достаточно простыми, чтобы с ПК мог работать пользователь без профессиональной специальной подготовки;

    иметь высокую надежность работы (более 5000 ч наработки на отказ).

В соответствии с международным стандартом-спецификацией РС99 ПК по назначению делятся на следующие категории:

    массовый ПК (Consumer);

    деловой ПК (Office PC);

    портативный ПК (Mobile PC);

    рабочая станция (Workstation PC);

    развлекательный ПК (Entertainment PC).

Большинство ПК, имеющихся в настоящее время на рынке, являются массовыми. Для деловых ПК минимизированы требования к средствам воспроизведения графики, а к средствам работы со звуковыми данными требования вообще не предъявляются. Для портативных ПК обязательным является наличие средств для создания соединений удаленного доступа, т.е. средств компьютерной связи. В категории рабочих станций повышены требования к устройствам хранения данных, а в категории развлекательных ПК – к средствам воспроизведения звука и видео.

По поколениям ПК делятся:

    на ПК 1-го поколения, используют 8-битные микропроцессоры;

    ПК 2-го поколения, используют 16-битные микропроцессоры;

    ПК 3-го поколения, используют 32-битные микропроцессоры;

    ПК 4-го поколения, используют 64-битные микропроцессоры.

ПК можно также разделить на две большие группы: стационарные и переносные. К переносным компьютерам относятся ноутбуки, электронные записные книжки, секретари и блокноты.

Электронная вычислительная машина - это комплекс технических и программных средств, предназначенные для автоматизации подготовки и решения задач пользователей. Под пользователем понимают человека, в интересах которого проводится обработка данных на ЭВМ.

Структура - это совокупность элементов и их связей. Различают структуры технических, программных и аппаратурно-программных средств.

Архитектура ЭВМ - это многоуровневая иерархия аппаратурно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение. Конкретная реализация уровней определяет особенности структурного построения ЭВМ.

Детализацией архитектурного и структурного построения ЭВМ занимаются различные категории специалистов вычислительной техники. Инженеры - схемотехники проектируют отдельные технические устройства и разрабатывают методы их сопряжения друг с другом. Системные программисты создают программы управления техническими средствами, информационного взаимодействия между уровнями, организации вычислительного процесса. Программисты-прикладники разрабатывают пакеты программ более высокого уровня, которые обеспечивают взаимодействие пользователей с ЭВМ и необходимый сервис при решении ими своих задач.

Структуру ЭВМ определяет следующая группа характеристик:

· технические и эксплуатационные характеристики ЭВМ (быстродействие и производительность, показатели надежности, достоверности, точности, емкость оперативной и внешней памяти, габаритные размеры, стоимость технических и программных средств, особенности эксплуатации т.д.);

· характеристики и состав функциональных модулей базовой конфигурации ЭВМ; возможность расширения состава технических и программных средств; возможность изменения структуры;

· состав программного обеспечения ЭВМ и сервисных услуг (операционная система или среда, пакеты прикладных программ, средства автоматизации программирования).

К основным характеристикам ЭВМ относятся:

Быстродействие это число команд, выполняемых ЭВМ за одну секунду.

Сравнение по быстродействию различных типов ЭВМ, не обеспечивает достоверных оценок. Очень часто вместо характеристики быстродействия используют связанную с ней характеристику производительность.

Производительность это объем работ, осуществляемых ЭВМ в единицу времени.

Применяются также относительные характеристики производительности. Фирма Intel для оценки процессоров предложила тест, получивший название индекс iCOMP (Intel ComparativeMicroprocessor Performance). При его определении учитываются четыре главных аспекта производительности: работа с целыми числами, с плавающей запятой, графикой и видео. Данные имеют 16- и 32-разрядной представление. Каждый из восьми параметров при вычислении участвует со своим весовым коэффициентом, определяемым по усредненному соотношению между этими операциями в реальных задачах. По индексу iCOMP ПМ Pentium 100 имеет значение 810, а Pentium 133-1000.

Емкость запоминающих устройств. Емкость памяти измеряется количеством структурных единиц информации, которое может одновременно находится в памяти. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (байт равен восьми битам). Следующими единицами измерения служат 1 Кбайт = 210 = 1024 байта, 1 Мбайт = 210 Кбайта = 220 байта, 1 Гбайт =210 Мбайта = 220 Кбайта = 230 байта.

Емкость оперативной памяти (ОЗУ) и емкость внешней памяти (ВЗУ) характеризуются отдельно. Этот показатель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.

Надежность это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени (стандарт ISO (Международная организация стандартов) 2382/14-78).

Высокая надежность ЭВМ закладывается в процессе ее производства. Применение сверхбольшие интегральные схемы (СБИС) резко сокращают число используемых интегральных схем, а значит, и число их соединений друг с другом. Модульный принцип построения позволяет легко проверять и контролировать работу всех устройств, проводить диагностику и устранение неисправностей.

Точность это возможность различать почти равные значения (стандарт ISO - 2382/2-76).

Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

Достоверность это свойство информации быть правильно воспринятой.

Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратурно-программными средствами контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.

Возможна следующая классификация ЭВМ:

– ЭВМ по принципу действия;

– ЭВМ по этапам создания;

– ЭВМ по назначению;

– ЭВМ по размерам и функциональным возможностям.

Классификация ЭВМ по принципу действия. Электронная вычислительная машина, компьютер - комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.

По принципу действия вычислительные машины делятся на три больших класса:

аналоговые (АВМ),

цифровые (ЦВМ)

гибридные (ГВМ).

Критерием деления вычислительных машин на эти три класса является форма представления информации, с которой они работают.

Цифровые вычислительные машины (ЦВМ) – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.

Аналоговые вычислительные машины (АВМ) – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения). АВМ машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2 –5%).На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.

Гибридные вычислительные машины (ГВМ) – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации – электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами (ЭВМ), без упоминания об их цифровом характере.

Классификация ЭВМ по этапам создания. По этапам создания и используемой элементной базе ЭВМ условно делятся на поколения:

1-е поколение, 50-е гг.: ЭВМ на электронно-вакуумных лампах;

2-е поколение, 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);

3-е поколение, 70-е гг.: ЭВМ на полупроводниковых интегральных микросхемах с малой и средней степенью интеграции (сотни, тысячи транзисторов в одном корпусе);

4-е поколение, 80-е гг.: ЭВМ на больших и сверхбольших интегральных схемах-микропроцессорах (десятки тысяч - миллионы транзисторов в одном кристалле);

5-е поколение, 90-е гг.: ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

6-е и последующие поколения: оптоэлектронных ЭВМ с массовым параллелизмом и нейронной структурой - с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Каждое следующие поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.

Классификация ЭВМ по назначению . По назначению ЭВМ можно разделить на три группы:

– универсальные (общего назначения),

– проблемно-ориентированные

– специализированные.

Универсальные ЭВМ предназначены для решения самых различных технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами. К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого крута задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы. К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами, устройства согласования и сопряжения работы узлов вычислительных систем.

Классификация ЭВМ по размерам и функциональным возможностям . По размерам и функциональным возможностям ЭВМ можно разделить на:

· сверхбольшие (суперЭВМ),

· большие (Mainframe),

· сверхмалые (микроЭВМ).

Персональные компьютеры можно классифицировать по типоразмерам . Так, различают настольные (desktop), портативные (notebook), карманные (palmtop) модели. Совсем недавно появились устройства, сочетающие возможности карманных персональных компьютеров и устройств мобильной связи. По-английски они называются РDА, Personal Digital Assistant. Пользуясь тем, что в русском языке за ними пока не закрепилось какое-либо название, их можно называть мобильными вычислительными устройствами (МВУ).

Настольные модели распространены наиболее широко. Они являются принадлежностью рабочего места. Эти модели отличаются простотой изменения конфигурации за счет несложного подключения дополнительных внешних приборов или установки дополнительных внутренних компонентов. Достаточные размеры корпуса в настольном исполнении позволяют выполнять большинство подобных работ без привлечения специалистов, а это позволяет настраивать компьютерную систему оптимально для решения именно тех задач, для которых она была приобретена.

Портативные модели удобны для транспортировки. Их используют бизнесмены, коммерсанты, руководители предприятий и организаций, проводящие много времени в командировках и переездах. С портативным компьютером можно работать при отсутствии рабочего места. Особая привлекательность портативных компьютеров связана с тем, что их можно использовать в качестве средства связи. Подключив такой компьютер к телефонной сети, можно из любой географической точки установить обмен данными между ним и центральным компьютером своей организации. Так производят обмен сообщениями, передачу приказов и распоряжений, получение коммерческих данных, докладов и отчетов. Для эксплуатации на рабочем месте портативные компьютеры не очень удобны, но их можно подключать к настольным компьютерам, используемым стационарно.

Карманные модели выполняют функции «интеллектуальных записных книжек». Они позволяют хранить оперативные данные и получать к ним быстрый доступ. Некоторые карманные модели имеют жестко встроенное программное обеспечение, что облегчает непосредственную работу, но снижает гибкость в выборе прикладных программ,

Мобильные вычислительные устройства сочетают в себе функции карманных моделей компьютеров и средств мобильной связи (сотовых радиотелефонов). Их отличительная особенность - возможность мобильной работы с Интернетом, а в ближайшем будущем и возможность приема телевизионных передач. Дополнительно МВУ комплектуют средствами связи по инфракрасному лучу, благодаря которым эти карманные устройства могут обмениваться данными с настольными ПК и друг с другом.

Многопользовательские микроЭВМ – это мощные микроЭВМ, оборудованные несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.

Персональные компьютеры (ПК) – однопользовательские микроЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения.

Рабочие станции (work station) представляют собой однопользовательские мощные микроЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.).

Серверы (server) – многопользовательские мощные микроЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети.

Конечно, вышеприведенная классификация весьма условна, ибо мощная современная ПК, оснащенная проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как полноправная рабочая станция, и как многопользовательская микроЭВМ, и как хороший сервер, по своим характеристикам почти не уступающий малым ЭВМ.

Классификация по уровню специализации. По уровню специализации компьютеры делят на универсальные и специализированные. На базе универсальных компьютеров можно собирать вычислительные системы произвольного состава (состав компьютерной системы называется конфигурацией). Так, например, один и тот же персональный компьютер можно использовать для работы с текстами, музыкой, графикой, фото- и видеоматериалами.

Специализированные компьютеры предназначены для решения конкретного круга задач. К таким компьютерам относятся, например, бортовые компьютеры автомобилей, судов, самолетов, космических аппаратов. Компьютеры, интегрированные в бытовую технику, например в стиральные машины, СВЧ-плиты и видеомагнитофоны, тоже относятся к специализированным. Бортовые компьютеры управляют средствами ориентации и навигации, осуществляют контроль состояния бортовых систем, выполняют некоторые функции автоматического управления и связи, а также большинство функций оптимизации параметров работы систем объекта (например, оптимизацию расхода топлива объекта в зависимости от конкретных условий движения). Специализированные мини-ЭВМ, ориентированные на работу с графикой, называют графическими станциями. Их используют При подготовке кино- и видеофильмов, а также рекламной продукции. Специализированные компьютеры, объединяющие компьютеры предприятия в одну сеть, называют файловыми серверами. Компьютеры, обеспечивающие передачу информации между различными участниками всемирной компьютерной сети, называют сетевыми серверами.

Во многих случаях с задачами специализированных компьютерных систем могут справляться и обычные универсальные компьютеры, но считается, что использование специализированных систем все-таки эффективнее. Критерием оценки эффективности выступает отношение производительности оборудования к величине его стоимости.

Классификация по совместимости. В мире существует множество различных видов и типов компьютеров. Они выпускаются разными производителями, собираются из разных деталей, работают с разными программами. При этом очень важным вопросом становится совместимость различных компьютеров между собой. От совместимости зависит взаимозаменяемость узлов и приборов, предназначенных для разных компьютеров, возможность переноса программ с одного компьютера на другой и возможность совместной работы разных типов компьютеров с одними и теми же данными.

Аппаратная совместимость . По аппаратной совместимости различают так называемые аппаратные платформы. В области персональных компьютеров сегодня наиболее широко распространены две аппаратные платформы: 1ВМ РС и Аррlе Macintosh. Кроме них существуют и другие платформы, распространенность которых ограничивается отдельными регионами или отдельными отраслями. Принадлежность компьютеров к одной аппаратной платформе повышает совместимость между ними, а принадлежность к разным платформам - понижает.

Кроме аппаратной совместимости существуют и другие виды совместимости: совместимость на уровне операционной системы, программная совместимость, совместимость на уровне данных.

Классификация по типу используемого процессора . Процессор - основной компонент любого компьютера. В электронно-вычислительных машинах это специальный блок, а в персональных компьютерах - специальная микросхема, которая выполняет все вычисления. Даже если компьютеры принадлежат одной аппаратной платформе, они могут различаться по типу используемого процессора. Тип используемого процессора в значительной (хотя и не в полной) мере характеризует технические свойства компьютера.

Классификация по назначению - один из наиболее ранних методов классификации. Он связан с тем, как компьютер применяется. По этому принципу различают большие ЭВМ (электронно-вычислительные машины), мини-ЭВМ, микро-ЭВМ, и персональные компьютеры, которые, в свою очередь, подразделяют на массовые, деловые, портативные, развлекательные и рабочие станции.

Большие ЭВМ – э то самые мощные компьютеры. Их применяют для обслуживания очень крупных организаций и даже целых отраслей народного хозяйства. За рубежом компьютеры этого класса называют мэйнфреймами (mainfram ). В России за ними закрепился термин большие ЭВМ. Штат обслуживания большой ЭВМ составляет до многих десятков человек. На базе таких суперкомпьютеров создают вычислительные центры, включающие в себя несколько отделов или групп.

Первая большая ЭВМ ЭНИАК (Electronic Numerical Integrator and Computer) была создана в 1946 г. (в 1996 г. отмечалось 50-летие создания первой ЭВМ). Эта машина имела массу более 50 т, быстродействие несколько сотен операций в секунду, оперативную память емкостью 20 чисел; занимала огромный зал площадью около 100кв.м.

Производительность больших ЭВМ оказалась недостаточной для ряда задач: прогнозирования метеообстановки, управления сложными оборонными комплексами, моделирования экологических систем и др. Это явилось предпосылкой для разработки и создания суперЭВМ, самых мощных вычислительных систем, интенсивно развивающихся и в настоящее время.

Основные направления эффективного применения мэйнфреймов - это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Последнее направление - использование мэйнфреймов в качестве больших серверов вычислительных сетей часто отмечается специалистами среди наиболее актуальных.

Появление в 70-х гг. малых ЭВМ обусловлено, с одной стороны, прогрессом в области электронной элементной базы, а с другой - избыточностью ресурсов больших ЭВМ ряда приложений. Малые ЭВМ используются чаще всего для управления технологическими процессами. Они более компактны и значительно дешевле больших ЭВМ.

Дальнейшие успехи в области элементной базы и архитектурных решений привели к возникновению супермини-ЭВМ – вычислительной машины, относящейся по архитектуре, размерам и стоимости к классу малых ЭВМ, но по производительности сравнимой с большой ЭВМ.

Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х гг. еще одного класса ЭВМ - микро ЭВМ.

Центральный процессор

Рис. Структура современного вычислительного центра на базе большой ЭВМ

Классификация микроЭВМ:

· универсальные (многопользовательские, однопользовательские (персональные))

· специализированные (многопользовательские (серверы), однопользовательские (рабочие станции))

Именно наличие МП служило первоначально определяющим признаком микро ЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ.

Функциональные возможности ЭВМ обуславливают важнейшие технико-эксплуатационные характеристики:

· быстродействие, измеряемое усредненным количеством операций, выполняемых машиной за единицу времени;

· разрядность и формы представления чисел, с которыми оперирует ЭВМ;

· номенклатура, емкость и быстродействие всех запоминающих устройств;

· номенклатура и технико-экономические характеристики внешних устройств хранения, обмена и ввода-вывода информации;

· типы и пропускная способность устройств связи и сопряжения узлов ЭВМ между собой (внутримашинного интерфейса);

· способность ЭВМ одновременно работать с несколькими пользователями и выполнять одновременно несколько программ (многопрограммность);

· типы и технико-эксплуатационные характеристики операционных систем, используемых в машине;

· наличие и функциональные возможности программного обеспечения;

· способность выполнять программы, написанные для других типов ЭВМ (программная совместимость с другими типами ЭВМ);

· система и структура машинных команд;

· возможность подключения к каналам связи и к вычислительной сети;

· эксплуатационная надежность ЭВМ;

· коэффициент полезного использования ЭВМ во времени, определяемый соотношением времени полезной работы и времени профилактики

К суперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду.

Несмотря на широкое распространение персональных компьютеров, значение больших ЭВМ не снижается. Из-за высокой стоимости их обслуживания при работе больших ЭВМ принято планировать и учитывать каждую минуту. Для экономии времени работы больших ЭВМ малопроизводительные операции ввода, вывода и первичной подготовки данных выполняют с помощью персональной техники. Подготовленные данные передают на большую ЭВМ для выполнения наиболее ресурсоемких операций.

Центральный процессор - основной блок ЭВМ, в котором непосредственно и происходит обработка данных и вычисление результатов. Обычно центральный процессор представляет собой несколько стоек аппаратуры и размещается в отдельном помещении, в котором соблюдаются повышенные требования по температуре, влажности, защищенности от электромагнитных помех, пыли и дыма.

Группа системного программирования занимается разработкой, отладкой и внедрением программного обеспечения, необходимого для функционирования самой вычислительной системы. Работников этой группы называют системными программистами. Они должны хорошо знать техническое устройство всех компонентов ЭВМ, поскольку их программы предназначены в первую очередь для управления физическими устройствами. Системные программы обеспечивают взаимодействие программ более высокого уровня с оборудованием, то есть группа системного программирования обеспечивает программно-аппаратный интерфейс вычислительной системы.

Группа прикладного программирования занимается созданием программ для выполнения конкретных операций с данными. Работников этой группы называют прикладными программистами. В отличие от системных программистов им не надо знать техническое устройство компонентов ЭВМ, поскольку их программы работают не с устройствами, а с программами, подготовленными системными программистами. С другой стороны, с их программами работают пользователи, то есть конкретные исполнители работ. Поэтому можно говорить о том, что группа прикладного программирования обеспечивает пользовательский интерфейс вычислительной системы.

Группа подготовки данных занимается подготовкой данных, с которыми будут работать программы, созданные прикладными программистами. Во многих случаях сотрудники этой группы сами вводят данные с помощью клавиатуры, но они могут выполнять и преобразование готовых данных из одного вида в другой. Так, например, они могут получать иллюстрации, нарисованные художниками на бумаге, и преобразовывать их в электронный вид с помощью специальных устройств, называемых сканерами.

Группа технического обеспечения занимается техническим обслуживанием всей вычислительной системы, ремонтом и наладкой устройств, а также подключением новых устройств, необходимых для работы прочих подразделений.

Группа информационного обеспечения обеспечивает технической информацией все прочие подразделения вычислительного центра по их заказу. Эта же группа создает и хранит архивы ранее разработанных программ и накопленных данных. Такие архивы называют библиотеками программ или банками данных.

Отдел выдачи данных получает данные от центрального процессора и преобразует их в форму, удобную для заказчика. Здесь информация распечатывается на печатающих устройствах (принтерах) или отображается на экранах дисплеев.

Большие ЭВМ отличаются высокой стоимостью оборудования и обслуживания, поэтому работа таких суперкомпьютеров организована по непрерывному циклу. Наиболее трудоемкие и продолжительные вычисления планируют на ночные часы, когда количество обслуживающего персонала минимально. В дневное время ЭВМ исполняет менее трудоемкие, но более многочисленные задачи. При этом для повышения эффективности компьютер работает одновременно с несколькими задачами и, соответственно, с несколькими пользователями. Он поочередно переключается с одной задачи на другую и делает это настолько быстро и часто, что у каждого пользователя создается впечатление, будто компьютер работает только с ним. Такое распределение ресурсов вычислительной системы носит название принципа разделения времени.

Мини-ЭВМ – от больших ЭВМ компьютеры этой группы отличаются уменьшенными размерами и, соответственно, меньшей производительностью и стоимостью. Такие компьютеры используются крупными предприятиями, научными учреждениями, банками и некоторыми высшими учебными заведениями, сочетающими учебную деятельность с научной.

На промышленных предприятиях мини-ЭВМ управляют производственными процессами, но могут сочетать управление производством с другими задачами. Например, они могут помогать экономистам в осуществлении контроля себестоимости продукции, нормировщикам в оптимизации времени технологических операций, конструкторам в автоматизации проектирования станочных приспособлений, бухгалтерии в осуществлении учета первичных документов и подготовки регулярных отчетов для налоговых органов. Для организации работы с мини-ЭВМ тоже требуется специальный вычислительный центр, хотя и не такой многочисленный, как для больших ЭВМ.

Микро-ЭВМ – компьютеры данного класса доступны многим предприятиям. Организации, использующие микро-ЭВМ, обычно не создают вычислительные центры. Для обслуживания такого компьютера им достаточно небольшой вычислительной лаборатории в составе нескольких-человек. В число сотрудников вычислительной лаборатории обязательно входят программисты, хотя напрямую разработкой программ они не занимаются. Необходимые системные программы обычно покупают вместе с компьютером, а разработку нужных прикладных программ заказывают более крупным вычислительным центрам или специализированным организациям.

Программисты вычислительной лаборатории занимаются внедрением приобретенного или заказанного программного обеспечения, выполняют его доводку и настройку, согласовывают его работу с другими программами и устройствами компьютера. Хотя программисты этой категории и не разрабатывают системные и прикладные программы, они могут вносить в них изменения, создавать или изменять отдельные фрагменты. Это требует высокой квалификации и универсальных знаний. Программисты, обслуживающие микро-ЭВМ, часто сочетают в себе качества системных и прикладных программистов одновременно.

Несмотря на относительно невысокую производительность по сравнению с большими ЭВМ, микро-ЭВМ находят применение и в крупных вычислительных центрах. Там им поручают вспомогательные операции, для которых нет смысла использовать дорогие суперкомпьютеры.

Персональные компьютеры (ПК) – эта категория компьютеров получила особо бурное развитие в течение последних двадцати лет. Из названия видно, что такой компьютер предназначен для обслуживания одного рабочего места. Как правило, с персональным компьютером работает один человек. Несмотря на свои небольшие размеры и относительно невысокую стоимость, современные персональные компьютеры обладают немалой производительностью. Многие современные персональные модели превосходят большие ЭВМ 70-х годов, мини-ЭВМ 80-х годов и микро-ЭВМ первой половины 90-х годов. Персональный компьютер (Personal Computer , РС) вполне способен удовлетворить большинство потребностей малых предприятий и отдельных лиц.

Персональный компьютер для удовлетворения требованиям общедоступности и универсальности должен иметь следующие характеристики:

· малую стоимость, находящуюся в пределах доступности для индивидуального покупателя;

· автономность эксплуатации без специальных требований к условиям окружающей среды;

· гибкость архитектуры, обеспечивающую ее адаптивность к разнообразным применениям в сфере управления, науки, образования, в быту;

· «дружественность» операционной системы и прочего программного обеспечения, обусловливающую возможность работы с ней пользователя без специальной профессиональной подготовки;

· высокую надежность работы (более 5000 ч наработки на отказ).

За рубежом распространенными моделями компьютеров в настоящее время являются IВМ РС с микропроцессорами Рentium и Pentium Pro.

Отечественная промышленность (страны СНГ) выпускала DЕС –совместимые (диалоговые вычислительные ДВК-1 - ДВК- 4 на основе Электроники МС-1201, Электроники 85, Электроники 32 и др.) и IВМ РС-совместимые (ЕС1840 - ЕС1842, ЕС1845, ЕС1849, ЕС1861, Искра1030, Искра 4816, Нейрон И9.66 и др.) компьютеры. Сейчас подавляющее большинство отечественных персональных компьютеров собирается из импортных комплектующих и относится к IBM РС- совместимым.

Персональные компьютеры можно классифицировать по ряду признаков.

По поколениям персональные компьютеры делятся следующим образом:

· ПК 1-го поколения - используют 8-битные микропроцессоры;

· ПК 2-го поколения - используют 16-битные микропроцессоры;

· ПК 3-го поколения -используют 32-битные микропроцессоры;

· ПК 4-го поколения - используют 64-битные микропроцессоры.

· ПК 5-го поколения – используют 128-битные микропроцессоры.

Особенно широкую популярность персональные компьютеры получили после 1995 г. в связи с бурным развитием Интернета. Персонального компьютера вполне достаточно для использования всемирной сети в качестве источника научной, справочной, учебной, культурной и развлекательной информации. Персональные компьютеры являются также удобным средством автоматизации учебного процесса по любым дисциплинам, средством организации дистанционного (заочного) обучения и средством организации досуга. Они вносят большой вклад не только в производственные, но и в социальные отношения. Их нередко используют для организации надомной трудовой деятельности, что особенно важно в условиях ограниченной трудозанятости.

До последнего времени модели персональных компьютеров условно рассматривали в двух категориях: бытовые ПК и профессиональные ПК. Бытовые модели, как правило, имели меньшую производительность, но в них были приняты особые меры для работы с цветной графикой и звуком, чего не требовалось для профессиональных моделей. В связи с достигнутым в последние годы резким удешевлением средств вычислительной техники границы между профессиональными и бытовыми моделями в значительной степени стерлись, и сегодня в качестве бытовых нередко используют высокопроизводительные профессиональные модели, а профессиональные модели, в свою очередь, комплектуют устройствами для воспроизведения мультимедийной информации, что ранее было характерно для бытовых устройств. Под термином мультимедиа подразумевается сочетание нескольких видов данных в одном документе (текстовые, графические, музыкальные и видеоданные) или совокупность устройств для воспроизведения этого комплекса данных.

Начиная с 1999 г. в области персональных компьютеров начал действовать международный сертификационный стандарт - спецификация РС99. Он регламентирует принципы классификации персональных компьютеров и оговаривает минимальные и рекомендуемые требования к каждой из категорий. Новый стандарт устанавливает следующие категории персональных компьютеров:

Сonsumer РС (массовый ПК);

Оffice РС (деловой ПК);

Мobi1е РС (портативный ПК);

Workstation РС (рабочая станция);

Entertaimemt РС (развлекательный ПК).

Согласно спецификации РС99 большинство персональных компьютеров, присутствующих в настоящее время на рынке, попадают в категорию массовых ПК. Для деловых ПК минимизированы требования к средствам воспроизведения графики, а к средствам работы со звуковыми данными требования вообще не предъявляются. Для портативных ПК обязательным является наличие средств для создания соединений удаленного доступа, то есть средств компьютерной связи. В категории рабочих станций повышены требования к устройствам хранения данных, а в категории развлекательных ПК – к средствам воспроизведения графики и звука.

Таким образом, в заключение можно сказать следующее. На настоящий момент существует множество систем и методов, принципов и оснований классификации ЭВМ. В данной работе были приведены наиболее распространенные классификации ЭВМ.

Таким образом, ЭВМ классифицируются по назначению (большие ЭВМ, мини-ЭВМ, микро-ЭВМ, персональные компьютеры), по уровню специализации (универсальные и специализированные), по типоразмерам (настольные, портативные, карманные, мобильные), по совместимости, по типу используемого процессора и др. Четких границ между классами компьютеров не существует. По мере совершенствования структур и технологии производства, появляются новые классы компьютеров, границы существующих классов существенно изменяются.

Наиболее ранним методов классификация является классификация ЭВМ по назначению.

Наиболее распространенным видом ЭВМ являются персональные компьютеры, подразделяющиеся на массовые, деловые, портативные, развлекательные и рабочие станции.

Деление компьютерной техники на поколения - весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования.

По условиям эксплуатации компьютеры делятся на два типа: офисные (универсальные); специальные.

Офисные предназначены для решения широкого класса задач при нормальных условиях эксплуатации.

Специальные компьютеры служат для решения более узкого класса задач или даже одной задачи, требующей многократного решения, и функционируют в особых условиях эксплуатации. Машинные ресурсы специальных компьютеров часто ограничены. Однако их узкая ориентация позволяет реализовать заданный класс задач наиболее эффективно.


2. Шифратор, Дешифратор

Шифратором , или кодером называется комбинационное логическое устройство для преобразования чисел из десятичной системы счисления в двоичную. Входам шифратора последовательно присваиваются значения десятичных чисел, поэтому подача активного логического сигнала на один из входов воспринимается шифратором как подача соответствующего десятичного числа. Этот сигнал преобразуется на выходе шифратора в двоичный код. Согласно сказанному, если шифратор имеетn выходов, число его входов должно быть не более чем 2 n . Шифратор, имеющий 2 n входов и n выходов, называется полным . Если число входов шифратора меньше 2 n , он называется неполным .

Рассмотрим работу шифратора на примере преобразователя десятичных чисел от 0 до 9 в двоично-десятичный код. Таблица истинности, соответствующая этому случаю, имеет вид

Так как число входов данного устройства меньше 2 n = 16, имеем неполный шифратор. Используя таблицу для Q 3 , Q 2 , Q 1 и Q 0 , можно записать следующие выражения:

Полученная система ФАЛ характеризует работу шифратора. Логическая схема устройства, соответствующая системе приведена на рисунке ниже .


Похожая информация.


КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «minomin.ru» — Сайт о компьютерах, и работе в интернете