Блок питания ноутбука из блока пк. Ремонт блока питания для ноутбука. Видео урок разборки и сборки блока питания ноутбука

Зарядные устройства, обозначаемые на схемах, как Charger, являются ключевым звеном в процессе запуска ноутбука.Название «зарядное устройство» совсем не означает, что оно используется только для заряда аккумулятора. Этим модулем формируется первичное напряжение, из которого затем вырабатываются все остальные напряжения, т.е. Сharger является одним из ключевых звеньев во всей системе энергообеспечения ноутбука. И поэтому неудивительно, что статистика неисправностей ноутбуков говорит о необходимости обсуждения схемотехники данного модуля.

В среде специалистов и пользователей ноутбуков так сложилось, что зарядными устройствами часто называют блоки питания, формирующие постоянное напряжение величиной примерно +19V. Это напряжение получают из сетевого переменного напряжения 220 Вольт путем импульсного преобразования. Но называть этот преобразователь, этот блок питания, зарядным устройством как-то не совсем корректно. К нему в большей степени подходит термин «сетевой адаптер».

Зарядное устройство (Charger ) в ноутбуках выполняет, как правило, следующие основные функции:

  • формирование зарядного напряжения/тока для аккумуляторной батареи;
  • коммутацию «первичного» напряжения, необходимого для формирования всех системных напряжений;
  • информирование системных контроллеров о подключении сетевого адаптера;
  • автоматическое управление мощностью, потребляемой от сетевого адаптера (функция DPM) .

Упрощенную функциональную схему Charger"а мы попытались представить на рис.1.

Рис.1 Блок-схема зарядного устройства ноутбука

Формирование зарядного напряжения аккумулятора

Исходя из названия модуля, эта функция является его важнейшей функцией. Как известно, в аккумуляторных батареях ноутбуков, в настоящее время широко применяются литий-ионные аккумуляторы (LiOn). Номинальным напряжением одного литий-ионного элемента является 3.6 Вольт. На практике же, заряд этих элементов осуществляется напряжением 3.9 – 4.3 вольт/элемент. Также хорошо известно, что увеличение емкости батарей достигается последовательно-параллельным включением нескольких аккумуляторов.

Рис.2 Трехэлементная (3-Cell) батарея. Каждый элемент состоит из двух параллельно-включенных "банок". В результате получаем батерю типа "3S-2P"

Чаще всего, батарея образована тремя элементами (Cell"s), каждый из которых, в свою очередь, состоит из двух или трех параллельно-включенных «банок» (рис.2). Разумеется, что такие много-секционные батареи требуют увеличенного зарядного напряжения, величину которого очень легко подсчитать: необходимо напряжение заряда одного элемента умножить на количество элементов в цепочке. Таким образом, простая арифметика показывает, что для заряда 3-элементных батарей необходимо напряжение 11,7...12,9 Вольт. Отличить 3-элементные батареи можно следующим образом:

  • во-первых, в прайс-листах реселлеров эти батареи могут быть обозначены, как 3-Cell;
  • во-вторых, по напряжению батареи – 3-х элементные аккумуляторы имеют выходное напряжение, равное 10.8 Вольт (иногда попадаются батареи с напряжением 11.1 Вольт). Еще раз обращаем внимание, что это лишь номинальные напряжения аккумуляторов, а на самом деле напряжение на них несколько выше, например, 12.6 Вольт.

Наряду с 3-Cell батареями, существуют и 4-х элементные аккумуляторы (рис.3). Эти батареи требуют зарядного напряжения величиной от 15.6 В до 17.2 В. Аккумуляторы этого типа в прайс-листах обозначаются, как 4-Cell, а их выходное напряжение, как правило, равно 14.4 В (но изредка попадаются батареи с выходным напряжением 14.8 Вольт).

Рис.3 Четырехэлементная (4-Cell) батарея. Каждый элемент состоит из двух параллельно-включенных "банок". В результате получаем батерю типа "4S-2P"

Кроме того, ряд ноутбуков позволяет работать как с 3-элементными, так и с 4-элементыми батареями, автоматически изменяя формируемое зарядное напряжение, в зависимости от типа подключенной батареи. Естественно, что Charger таких ноутбуков должен «уметь заряжать» батареи разных типов, формируя разное выходное напряжение и разные выходные токи.

Сетевой адаптер (блок питания), являющийся главным источником энергии для ноутбука, формирует постоянное напряжение номиналом 19 Вольт. А для заряда аккумуляторов, как мы видели, требуется меньшее напряжение. Поэтому в составе ноутбука присутствует зарядное устройство, формирующее напряжение соответствующего номинала, достаточное и необходимое для заряда батареи. Таким образом, фактически, Charger представляет собой понижающий DC-DC преобразователь импульсного типа, в котором могут быть реализованы и некоторые дополнительные функции. Например, такие как:

  • включение и выключение преобразователя по командам от управляющего контроллера;
  • контроль выходного тока, т.е. контроль тока, потребляемого аккумуляторной батареей в момент ее заряда;
  • контроль выходного зарядного напряжения, прикладываемого к аккумулятору, с целью его регулировки и стабилизации;
  • управление величиной зарядного тока;
  • определение подключения аккумуляторной батареи с целью предотвращения работы в режиме холостого хода и др.

Коммутация первичного напряжения

Источником энергии для ноутбука может являться либо сетевой адаптер, когда он подключен к питающей сети 220 Вольт, либо аккумуляторная батарея. В составе Charger"а имеются транзисторные ключи, которые коммутируются таким образом, чтобы на выходе Charger"а всегда присутствовало напряжение VDC , из которого затем формируются все необходимые для работы ноутбука напряжения. Это напряжение VDC является либо напряжением сетевого адаптера (т.е. напряжением 19В), либо напряжением от аккумулятора (например, 12 В).

Логика работы данной схемы очень простая. Если сетевой адаптер подключен и формирует напряжение 19В, то Charger на свой выход начинает транслировать именно это напряжение. Если же напряжение сетевого адаптера не обнаружено, то происходит переключение на аккумуляторную батарею. Фактически, схема коммутации первичного напряжения представляет собой два ключа и контроллер, анализирующий наличие входного напряжения 19В (рис.4).

Рис.4 Принцип выбора "первичного" источника энергии для питания ноутбука

К функциям входных коммутаторов, можно отнести и функцию контроля входного тока. Для этого в схему Charger"а вводится цепь измерения тока, традиционно состоящая из токового датчика, в виде низкоомного резистора. Эта цепь позволяет измерять величину тока, потребляемого источниками питания ноутбука от сетевого адаптера, т.е. позволяет измерять ток в канале 19V. Величину входного тока анализирует контроллер зарядного устройства, и, если измеренное значение превышает заданную величину, контроллер зарядного устройства закрывает входной ключ канала 19V. Такая защита позволяет исключить работу сетевого адаптера в случае коротких замыканий при неисправностях в питающих каскадах ноутбука.

Информирование о подключении сетевого адаптера

Эта функция тесно связана с предыдущей. Если контроллер Charger"а обнаружил наличие напряжения 19В от сетевого адаптера, то он не только переключает ноутбук на работу именно от этого напряжения, но и «сообщает» об этом контроллеру клавиатуры - KBC (EC) или «южному мосту» посредством генерации сигнала, часто обозначаемого на схемах, как ACOK . Активность сигнала ACOK приводит к тому, что зарядное устройство запускается и начинается зарядка аккумуляторной батареи, а, кроме того, выводится соответствующая индикация режима работы ноутбука.


Сделав краткий обзор общих принципов функционирования Charger"а, переходим к рассмотрению схемотехнических решений, положенных в основу построения зарядных устройств.

Центральным элементом любого Charger"а является микросхема-контроллер, набор функциональных возможностей которого может быть очень широким. Однако для построения Charger"а могут быть использованы и достаточно примитивные контроллеры.

В некоторых, уже достаточно старых, моделях ноутбуков в качестве микросхем контроллеров зарядного устройства приходилось встречаться с такой микросхемой общего применения, как TL494 (специалисты, которые занимались системными блоками питания AT и ранними ATX, с этой микросхемой должны быть очень хорошо знакомы). Естественно, что такое решение отличается достаточно громоздкой схемотехникой и сложностью реализаций даже самых простых функций. Поэтому о подобных схемах следует говорить, как об экзотике, и брать их за пример для обсуждения не стоит.

В настоящее время существует целый ряд специализированных микросхем, разработанных исключительно для применения в ноутбуках и именно в качестве Charger"а. Микросхемы этого класса выпускаются, в основном, такими производителями, как Maxim, Intersil, Fujitsu Electronics, Texas Instruments (семейство BQ). Интегрированные Charger"ы позволяют значительно упростить разработку схемы зарядного устройства и снизить ее габариты. Кроме того, такие контроллеры «нагружены» большим количеством дополнительных функций, о которых говорилось в начале статьи. В результате, в современных ноутбуках повсеместно применяются интегральные Charger"ы, и схемотехника всего зарядного устройства определяется типом и функциональными характеристиками именно этой микросхемы.

Так как микросхем интегральных Charger"ов сейчас достаточно много, то и различных вариантов построения зарядного устройства тоже хватает. Однако, несмотря на все разнообразие схем зарядных устройств и применяемых в них контроллеров, постараемся выделить и охарактеризовать их основные элементы.

Детектор сетевого адаптера

Определение входного питающего напряжения, формируемого сетевым адаптером, относится к основным функциям Charger"а. Практически во всех современных микросхемах Charger"ов эта функция является внутренней, и для ее реализации имеется отдельный контакт, на который подается напряжение, пропорциональное уровню входного напряжения 19VDC , формируемого адаптером. В наименовании этого контакта чаще всего встречается аббревиатура "AC " (например, ACIN или ACSET и т.п.), указывающая на то, что данным сигналом детектируется подключение ноутбука к питающей сети переменного тока.

Рис.5 Детектор сетевого адаптера

Детектор сетевого адаптера представляет собой делитель напряжения и компаратор, интегрированный в микросхему Charger"а (рис.5). На вход детектора подается напряжение +19V, которое резистивным делителем уменьшается до напряжения, допустимого для входа микросхемы, например, до 5 Вольт или до 2.5 Вольт. Далее, внутри микросхемы это напряжение сравнивается с внутренним опорным напряжением, номинал которого является уникальным для каждой микросхемы Charger"а (но обычно близок к уровню 1.2В или 2В). Компаратор осуществляет контроль входного напряжения ноутбука, т.е. не позволяет ноутбуку начать работу от адаптера при слишком низком питающем напряжении.

Схема детектора сетевого адаптера формирует сигнал, который мы условно назовем «ACOK ». Активизация сигнала ACOK подтверждает, что обнаружено подключение сетевого адаптера, и что его напряжение соответствует рабочему диапазону. Сигнал ACOK , как правило, является выходом с открытым коллектором (стоком), а его уровень активности (высокий или низкий) определяется типом микросхемы Charger"а (рис.6). Сигнал ACOK подается на вход микросхемы ICH («южный мост») или на вход микросхемы управляющего контроллера, в качестве которого обычно используется KBC.

Рис.6 Выходной сигнал детектора может быть активен как высоким уровнем, так и низким

Выход с открытым коллектором/стоком предполагает «подтягивание» этого контакта к шине питания через ограничивающий резистор. Но откуда же возьмется «подтягивающее» напряжение, если ноутбук и все его элементы еще не начали свою работу?

Очень часто подтягивающее напряжение для выхода ACOK формируется самой микросхемой Charger-контроллера. В состав контроллера вводится линейный стабилизатор, формирующий постоянное напряжение из питающего напряжения микросхемы, т.е. из +19V, подаваемых на вход DCIN . Выход линейного стабилизатора часто обозначается как LDO (рис.7). Выходное напряжение этого линейного стабилизатора обычно равно +5 Вольт. В некоторых случаях в качестве «подтягивающего» напряжения для выхода ACOK используется опорное напряжение, также формируемое внутренним источником опорного напряжения, и обозначаемое VREF .

Рис.7 "Подтягивание" выхода с открытым стоком к логической единице. Источником напряжения является внутренний линейный стабилизатор LDO.

Напряжение +19V для детектора сетевого адаптера берется непосредственно с входного питающего разъема (см.рис.5), но в некоторых ноутбуках на входе зарядного устройства устанавливается ключ, открывающийся самостоятельно или Charger-контроллером в момент появления входного напряжения +19V (рис.8). Такой ключ можно рассматривать в качестве буферного элемента, выполняющего функцию защиты от всплеска напряжения и от влияния переходных процессов при подключении. Также этот ключ не позволит включиться схеме при недостаточном напряжении от адаптера, что можно рассматривать в качестве защиты от неисправности сетевого адаптера, хотя функция защиты от запуска ноутбука при неисправном адаптере, обычно реализована, компаратором сигнала ACIN . Ведь если входное напряжение ACIN будет меньше порогового напряжения компаратора, выходной сигнал ACOK не должен генерироваться.

Рис.8 Входной транзистор, открывающийся автоматически

Входной ключ Charger"а является полевым P-канальным транзистором. Чаще всего это AP4435 или его аналоги. В случае неисправности входного транзистора зарядного устройства и невозможности идентификации его маркировки, можно смело ставить именно AP4435 . Следует отметить, что неисправность этого транзистора является одной из основных проблем Charger"а.

С другой стороны, нередки и схемы без входных транзисторных ключей. Однако современная схемотехника ноутбуков нацелена на применение входных транзисторных ключей, так как их наличие, кроме всего прочего, позволяет организовать дополнительные функции.

Рис.9 Реализация дополнительных защитных функций в Charger"е ноутбука Samsung NP-P55

В качестве примера такой дополнительной функции, можно привести схему «зарядника» ноутбука Samsung NP-P55 (рис.9). В этой схеме первоначальное открывание ключа обеспечивается резистивным делителем R516/R517 , который создает на затворе транзистора Q2 напряжение, меньшее, чем на его истоке. Это и является условием открывания Q2 . В результате, на стоке Q2 появляется напряжение VDC_ADPT , равное 19 Вольтам. Это напряжение используется для питания Charger-контроллера и формирования всех остальных напряжений ноутбука.

Кроме делителя, состоянием транзистора Q2 управляет еще и транзистор Q503 . Открывание транзистора Q503 приводит к подаче на затвор транзистора Q2 напряжения от сетевого адаптера, т.е. напряжения на истоке и затворе выравниваются. Это приводит к запиранию Q2 . Осталось выяснить, что же может привести к открыванию транзистора Q503 .

Затвор транзистора Q503 управляется триггером, состоящим из транзисторов Q501 и Q502 . Срабатывание триггера произойдет в случае открывания хотя бы одного из стабилитронов ZD500, ZD501 или ZD503. В свою очередь, эти стабилитроны открываются в случае значительного превышения напряжения в каналах 5V, 1.8V, 1.05V, 1.25V, 1.5V. Перечисленные напряжения питают процессор, чипсет, графический контроллер и память, и увеличение этих напряжений способно натворить много бед. Критическое превышение номинала этих напряжений может произойти только в случае пробоя транзисторных ключей в DC-DC преобразователях, формирующих эти напряжения из напряжения VDC .

Срабатывание триггера означает, что Q501 и Q502 оказываются открытыми, и это будет продолжаться до тех пор, пока на входе ноутбука будет присутствовать напряжение +19V. В этом случае, для повторного запуска ноутбука необходимо обязательно вынуть штекер сетевого адаптера, подождать некоторое время и снова подключить ноутбук к источнику питания.

Открытый триггер обеспечивает подачу на затвор Q503 низкого уровня, что приводит к открыванию Q503 и закрыванию Q2 . В результате, 19V (VDC ) перестает подаваться на DC-DC преобразователи и ноутбук выключается. Работа при повышенном напряжении основных элементов системы исключается.

Так как для работы детектора и его компаратора требуется наличие опорного напряжения, то, разумеется, необходимо обеспечить питанием микросхему Charger-контроллера. Питающим напряжением для микросхемы является все те же 19V от сетевого адаптера. Только эти 19 Вольт для обеспечения питания подаются на другой контакт, традиционно обозначаемый DCIN . Но об этом мы продолжить говорить уже в следующем номере нашего журнала.

Целью проекта является постройка универсального регулируемого блока питания, который может быть использован для зарядки никелевых или свинцовых аккумуляторов, причем не только автомобильных. Зарядное устройство позволит заряжать аккумуляторы с напряжением от 4 до 30 В.

Первое, что понадобится для реализации этого проекта, - это корпус. Подойдет, например, от китайского инвертора 12-220 В. Он монолитный и изготовлен из алюминия.

Можно взять любой другой подходящего размера, к примеру, от компьютерного блока питания.

Второе – это сетевой понижающий импульсный блок питания.

Напряжение на выходе используемого в этом проекте блока составляет 19 В при токе около 5 А.

Это дешевый универсальный адаптер для ноутбука. Он построен на ШИМ-контроллере из семейства UC38, имеет стабилизацию и защиту от коротких замыканий.

Третье – это цифровой или аналоговый вольтамперметр. Представленный здесь вольтамперметр был изъят из китайского стабилизатора напряжения (30 В, 5 А).

Четвертое – это немного таких электронных компонентов, как клеммы и шнур питания.

Устройство схематически изображено на нижеследующей картинке:

Теперь взгляните на схему блока питания. Микросхема TL431 располагается возле оптрона. Именно эта микросхема задает выходное напряжение. В обвязке всего 2 резистора, и путем их подбора можно получить нужное выходное напряжение.

На этой схеме он обозначен как R13. В имеющемся блоке его сопротивление составляет 20 кОм. Последовательно этому резистору нужно подключить переменный на 10 кОм, примерно, как на картинке:

Путем вращения переменного резистора необходимо добиться выходного напряжения в районе 30 В. Затем нужно отключить «переменник» и замерить его сопротивление, при котором напряжение на выходе было 30 В, и заменить R13 на резистор с подобранным сопротивлением. Получилось примерно 27 кОм. На этом переделка адаптера завершена.

Для ограничения тока будет использоваться метод ШИМ-регулировки, поскольку выходной ток с адаптера от ноутбука очень мал.

Вообще, эта схема представляет собой ШИМ-регулятор напряжения без отдельного узла ограничения тока. Этот генератор прямоугольных импульсов построен на базе таймера NE555, который работает на определенной частоте. Диоды служат для постоянной смены времени заряда и разряда частотозадающего конденсатора. Благодаря этому явлению имеется возможность менять скважность выходных импульсов. Поскольку силовой транзистор работает в режиме ключа (он либо открыт, либо закрыт), то можно наблюдать довольно высокий КПД. Переменный резистор регулирует скважность импульсов.

Установить необходимый ток заряда можно изменением напряжения, то есть вращением многооборотного переменного резистора.

Транзистор подойдет буквально любой. Здесь используется n-канальный полевой транзистор с напряжением 60 В и током от 20 А.

Из-за ключевого режима работы его нагрев не будет большим, в отличие от линейных схем, но теплоотвод не помешает. В этом проекте в качестве теплоотвода используется алюминиевый корпус.

Схема ШИМ-регулятора действительно проста, экономична и надежна, но тоже нуждается в небольшой доработке. Дело в том, что, согласно документации, микросхема NE555 имеет максимально допустимое напряжение питания 16 В. А на выходе переделанного адаптера напряжение практически в 2 раза выше, и при подключении схемы таймер однозначно сгорит.

Решений в данной ситуации несколько. Взгляните на 3 из них:

  1. Использовать линейный стабилизатор, скажем, от 5 до 12 В из семейства 78xx или

построить простой стабилизатор по следующей схеме:

Наипростейшим решением будет являться внедрение в схему линейного стабилизатора, к примеру, 7805. Но следует помнить, что максимальное напряжение питания в зависимости от производителя разнится от 24 до 35 В. В этом проекте используется стабилизатор КА7805 с максимальным входным напряжением 35 В по даташиту. Если не удается достать такую микросхему, можно построить стабилизатор всего из трех деталей.

После сборки нужно проверить ШИМ-регулятор.

На плате адаптера есть 2 активных компонента, которые подвергаются нагреву – силовой транзистор высоковольтной цепи преобразователя и сдвоенный диод на выходе схемы. Они были отпаяны и прикреплены к алюминиевому корпусу. При этом их нужно изолировать от основного корпуса.

Лицевая панель изготовлена из куска пластика.

В схеме адаптера имеется защита от короткого замыкания, но не имеет защиты от переполюсовки. Но это поправимо.

Поскольку в ходе тестирования выходное напряжение адаптера превысило 30 В, цифровой вольтамперметр сгорел. Не допускайте превышения напряжения ни на 1 В. Придется обойтись без него. Ток заряда будет показываться с помощью мультиметра.

Зарядник получился неплохой – заряжает также без проблем аккумуляторы от шуруповерта.

Прикрепленные файлы:

Как сделать простой Повер Банк своими руками: схема самодельного power bank

Покупая ноутбук или нетбук, точнее расчитывая бюджет на это прибретение, мы не учитываем дальнейших сопутствующих расходов. Сам лэптоп стоит допустим 500$, но ещё сумка 20$, мышь 10$. Аккумулятор при замене (а его гарантийный ресурс всего пару лет) потянет на 100$, и столько же будут стоить блок питания, в случае его сгорания.

Именно о нём и пойдёт тут разговор. У одного не очень состоятельного знакомого, недавно перестал работать блок питания для ноутбука acer. За новый придётся отдать почти сотню долларов, поэтому вполне логичным будет попробовать починить его своими руками. Сам БП представляет собой традиционную чёрную пластиковую коробочку с электронным импульсным преобразователем внутри, обеспечивающим напряжение 19В при токе 3А. Это стандарт для большинства ноутбуков и единственное отличие между ними - штеккер питания:). Сразу привожу здесь несколько схем блоков питания - кликните для увеличения.

При включении блока питания в сеть ничего не происходит - светодиод не светится и на выходе вольтметр показывает ноль. Проверка омметром сетевого шнура ничего не дала. Разбираем корпус. Хотя проще сказать, чем сделать: винтов или шурупов тут не предусмотрено, поэтому будем ломать! Для этого потребуется на соединительный шов поставить нож и стукнуть по нему слегка молотком. Смотрите не перестарайтесь, а то разрубите плату!

После того, как корпус слегка разойдётся, вставляем в образовавшуюся щель плоскую отвертку и с усилием проводим по контуру соединения половинок корпуса, аккуратно разламывая его по шву.

Разобрав корпус проверяем плату и детали на предмет чего-нибудь чёрного и обугленного.

Прозвонка входных цепей сетевого напряжения 220В сазу же выявила неисправность - это самовосстанавливающийся предохранитель, который почему-то не захотел восстановиться при перегрузке:)

Заменяем его на аналогичный, либо на простой плавкий с током 3 ампера и проверяем работу БП. Зелёный светодиод засветился, свидетельствуя о наличии напряжения 19В, но на разъёме по прежнему ничего нет. Точнее иногда что-то проскакивает, как при перегибе провода.

Придётся ремонтировать и шнур подключения блока питания к ноутбуку. Чаще всего обрыв происходит в месте ввода его в корпус или на разъёме питания.

Обрезаем сначала у корпуса - не повезло. Теперь возле штекера, что вставляется в ноутбук - снова нет контакта!

Тяжёлый случай - обрыв где-то посередине. Самый простой вариант, разрезать шнур пополам и оставить рабочую половинку, а нерабочую выкинуть. Так и сделал.

Припаиваем назад соединители и проводим испытания. Всё заработало - ремонт закончен.

Осталось только склеить половинки корпуса клеем "момент" и отдать блок питания . Весь ремонт БП занял не больше часа.

Блок питания - это устройство, служащее для преобразования (понижение или повышение) переменного сетевого напряжения в заданное постоянное напряжение. Блоки питания делятся на: трансформаторные и импульсные. Первоначально создавались только трансформаторные конструкции блоков питания. Они состояли из силового трансформатора, питающегося от бытовой сети 220В, 50Гц и выпрямителя с фильтром, стабилизатором напряжения. Благодаря трансформатору происходит понижение напряжения сети до необходимых величин, с последующим выпрямлением напряжения выпрямителем, состоящим из диодов, включенных по мостовой схеме. После выпрямления постоянное пульсирующее напряжение сглаживается параллельно подключенным конденсатором. При необходимости точной стабилизации уровня напряжения применяются стабилизаторы напряжения на транзисторах.

Основной недостаток трансформаторного блока питания - это трансформатор. Почему так? Все из-за веса и габаритов, так как они ограничивают компактность блока питания, при этом их цена достаточно высока. Но эти блоки питания просты в конструкции и это их достоинство. Но все-же в большинстве современных устройств применение трансформаторных блоков питания, стало не актуальным. Им на смену пришли импульсные блоки питания.

В состав импульсных блоков питания входят:

1) сетевой фильтр, (входной дроссель, электромеханический фильтр, обеспечивающего отстройку от помех, сетевой предохранитель);

2) выпрямитель и сглаживающий фильтр (диодный мост, накопительный конденсатор);

3) инвертор (силовой транзистор);

4) силовой трансформатор;

5) выходной выпрямитель (выпрямительные диоды включенные по полумостовой схеме);

6) выходной фильтр (фильтрующие конденсаторы, силовые дроссели);

7) блок управления инвертором (ШИМ контроллер с обвязкой)

Импульсный блок питания обеспечивает стабилизированное напряжение за счет использования обратной связи. Работает он следующим образом. Напряжение сети поступает на выпрямитель и сглаживающий фильтр, где напряжение сети выпрямляется, а пульсации сглаживается за счет использования конденсаторов. При этом выдерживается амплитуда порядка 300 вольт. На следующем этапе подключается инвертор. Его задача - формирование прямоугольных высокочастотных сигналов для трансформатора. Обратная связь с инвертором осуществляется через блок управления. С выхода трансформатора высокочастотные импульсы поступают на выходной выпрямитель. Из-за того, что частота импульсов порядка 100 кГц, то необходимо применение быстродействующих полупроводниковых диодов Шотке. На завершавшей фазе производится сглаживание напряжения на фильтрующем конденсаторе и дросселе. И только после этого напряжение заданной величины подается в нагрузку. Все, хватит теории, перейдем к практике и начнем делать блок питания.

Корпус блока питания

Каждый радиолюбитель, который занимается радиоэлектроникой, желая оформить свои устройства часто сталкивается с проблемой, где взять корпус. Эта проблема постигла и меня, что в свою очередь натолкнуло на мысль, а почему бы не сделать корпус своими руками. И тут начались мои поиски... Поиск готового решения как сделать корпус не привел ни к чему. Но я не отчаивался. Подумав некоторое время, у меня возникла мысль, а почему не сделать корпус из пластикового короба для укладки проводов. По габаритам он мне подходил, и я начал резать и клеить. Смотрим рисунки ниже.

Размеры короба были выбраны исходя из размера платы блока питания. Смотрим рисунок ниже.

Также в корпусе должны поместиться еще индикатор, провода, регулятор и сетевой разъем. Смотрим рисунок ниже.

Для установки выше перечисленных элементов в корпусе были прорезаны необходимые отверстия. Смотрим рисунки выше. Ну и наконец, для придания корпусу блока питания эстетичности, он был окрашен в черный цвет. Смотрим рисунки ниже.

Измерительный прибор

Скажу сразу, что искать измерительный прибор долго не пришлось, выбор сразу пал на совмещенный цифровой вольтамперметр TK1382. Смотрим рисунки ниже.

Диапазоны измерений прибора составляют для напряжения 0-100 В и ток до 10 А. На приборе также установлены два калибровочных резистора для подстройки напряжения и тока. Смотрим рисунок ниже.

Что касается схемы подключения, то у нее есть нюансы. Смотрим рисунки ниже.

Схема блока питания

Для измерения тока и напряжения воспользуемся схемой - 2, смотри рисунок выше. И так по порядку. На имеющийся у меня блок питания от ноутбука сначала найдем схему электрическую принципиальную. Поиск необходимо проводить по ШИМ контроллеру. В данном блоке питания это CR6842S . Схему смотрим ниже.

Теперь коснемся переделки. Так как будет делаться регулируемый блок питания, то схему придется переделать. Для этого внесем изменения в схему, эти участки обведены оранжевым цветом. Смотрим рисунок ниже.

Участок схемы 1,2 обеспечивает питание ШИМ контроллера. И из себя представляет параметрический стабилизатор. Напряжение стабилизатора 17,1 В выбрано в связи с особенностями работы ШИМ контроллера. При этом для питания ШИМ контроллера задаемся током через стабилизатор порядка 6 мА. "Особенность данного контроллера в том, что для его включения необходимо напряжение питания больше 16,4 В, ток потребления 4 мА" выдержка из datasheet. При такой переделке блока питания необходимо отказаться от обмотки самозапитки, так как ее применение не целесообразно при низких напряжениях на выходе. На рисунке ниже можете увидеть данный узел после переделки.

Участок схемы 3 обеспечивает регулирование напряжения, при данных номиналах элементов регулирование осуществляется в пределах 4,5-24,5 В. Для такой переделки необходимо выпаять резисторы, отмеченные на рисунке ниже оранжевым цветом, и на их место запаять переменный резистор для регулировки напряжения.

На этом переделка окончена. И можно производить пробный запуск. ВАЖНО!!! В связи с тем, что блок питания запитывается от сети 220 В то необходимо быть внимательным, во избежания попадания под действие напряжения сети! Это ОПАСНО ДЛЯ ЖИЗНИ!!! Перед первым запуском блока питания необходимо проверить правильность монтажа всех элементов, а затем производить включение в сеть 220 В, через лампочку накаливания 220 В, 40 Вт во избежания выхода из строя силовых элементов блока питания. Первый запуск можете увидеть на рисунке ниже.

Также после первого запуска проверим верхний и нижний пределы регулирования напряжения. И как задумывалось, они лежат в заданных пределах 4,5-24,5 В. Смотрим рисунки ниже.

Ну и напоследок, при испытаниях с нагрузкой на 2,5 А корпус начал хорошо греться, что меня не устроило и я решил сделать перфорацию в корпусе для охлаждения. Место для перфорации выбирал исходя из места наибольшего нагрева. Для перфорации корпуса сделал 9 отверстий диаметром 3 мм. Смотрим рисунок ниже.

Для предотвращения случайного попадания внутрь корпуса токопроводящих элементов, с обратной стороны крышки на небольшом расстоянии приклеена предохранительная заслонка. Смотрим рисунок ниже.

Рядовой блок питания ноутбука представляет собой весьма компактный и довольно мощный импульсный блок питания.

В случае его неисправности многие просто его выбрасывают, а на замену покупают универсальный БП для ноутбуков, стоимость которого начинается от 1000 руб. Но в большинстве случаев починить такой блок можно своими руками.

Речь пойдёт о ремонте блока питания от ноутбука ASUS. Он же AC/DC адаптер питания. Модель ADP-90CD . Выходное напряжение 19V, максимальный ток нагрузки 4,74А.

Сам блок питания работал, что было понятно по наличию индикации зелёного светодиода. Напряжение на выходном штекере соответствовало тому, что указано на этикетке - 19V.

Обрыва в соединительных проводах или поломки штекера не было. Но вот при подключении блока питания к ноутбуку зарядка батареи не начиналась, а зелёный индикатор на его корпусе потухал и светился в половину первоначальной яркости.

Также было слышно, что блок пищит. Стало ясно, что импульсный блок питания пытается запуститься, но по какой-то причине возникает то ли перегруз, то ли срабатывает защита от короткого замыкания.

Пару слов о том, как можно вскрыть корпус такого блока питания. Не секрет, что его делают герметичным, а сама конструкция не предполагает разборку. Для этого нам понадобится несколько инструментов.

Берём ручной лобзик или полотно от него. Полотно лучше взять по металлу с мелким зубом. Сам же блок питания лучше всего зажать в тисках. Если их нет, то можно изловчиться и обойтись без них.

Далее ручным лобзиком делаем пропил вглубь корпуса на 2-3 мм. посередине корпуса вдоль соединительного шва. Пропил нужно делать аккуратно. Если перестараться, то можно повредить печатную плату или электронную начинку.

Затем берём плоскую отвёртку с широким краем, вставляем в пропил и расщёлкиваем половинки корпуса. Торопиться не надо. При разделении половинок корпуса должен произойти характерный щелчок.

После того, как корпус блока питания вскрыт, убираем пластиковую пыль щёткой или кисточкой, достаём электронную начинку.

Чтобы осмотреть элементы на печатной плате потребуется снять алюминиевую планку-радиатор. В моём случае планка крепилась за другие части радиатора на защёлках, а также была приклеена к трансформатору чем-то вроде силиконового герметика. Отделить планку от трансформатора мне удалось острым лезвием перочинного ножа.

На фото показана электронная начинка нашего блока.

Саму неисправность искать долго не пришлось. Ещё до вскрытия корпуса я делал пробные включения. После пары подключений к сети 220V внутри блока что-то затрещало и зелёный индикатор, сигнализирующий о работе, полностью потух.

При осмотре корпуса был обнаружен жидкий электролит, который просочился в зазор между сетевым разъёмом и элементами корпуса. Стало ясно, что блок питания перестал штатно функционировать из-за того, что электролитический конденсатор 120 мкФ * 420V "хлопнул" из-за превышения рабочего напряжения в электросети 220V. Довольно рядовая и широко распространённая неисправность.

При демонтаже конденсатора его внешняя оболочка рассыпалась. Видимо потеряла свои свойства из-за длительного нагрева.

Защитный клапан в верхней части корпуса "вспучен", - это верный признак неисправного конденсатора.

Вот ещё пример с неисправным конденсатором. Это уже другой адаптер питания от ноутбука. Обратите внимание на защитную насечку в верхней части корпуса конденсатора. Она вскрылась от давления закипевшего электролита.

В большинстве случаев вернуть блок питания к жизни удаётся довольно легко. Для начала нужно заменить главного виновника поломки.

На тот момент у меня под рукой оказалось два подходящих конденсатора. Конденсатор SAMWHA на 82 мкФ * 450V я решил не устанавливать, хотя он идеально подходил по размерам.

Дело в том, что его максимальная рабочая температура +85 0 С. Она указана на его корпусе. А если учесть, что корпус блока питания компактный и не вентилируется, то температура внутри него может быть весьма высокой.

Длительный нагрев очень плохо сказывается на надёжности электролитических конденсаторов. Поэтому я установил конденсатор фирмы Jamicon ёмкостью 68 мкФ *450V, который рассчитан на рабочую температуру до 105 0 С.

Стоит учесть, что ёмкость родного конденсатора 120 мкФ, а рабочее напряжение 420V. Но мне пришлось поставить конденсатор с меньшей ёмкостью.

В процессе ремонта блоков питания от ноутбуков я столкнулся с тем, что очень трудно найти замену конденсатору. И дело вовсе не в ёмкости или рабочем напряжении, а его габаритах.

Найти подходящий конденсатор, который бы убрался в тесный корпус, оказалось непростой задачей. Поэтому было принято решение установить изделие, подходящие по размерам, пусть и меньшей ёмкости. Главное, чтобы сам конденсатор был новый, качественный и с рабочим напряжением не менее 420~450V. Как оказалось, даже с такими конденсаторами блоки питания работают исправно.

При запайке нового электролитического конденсатора необходимо строго соблюдать полярность подключения выводов! Как правило, на печатной плате рядом с отверстием указан знак "+ " или "- ". Кроме этого минус может помечаться чёрной жирной линией или меткой в виде пятна.

На корпусе конденсатора со стороны отрицательного вывода имеется пометка в виде полосы со знаком минуса "- ".

При первом включении после ремонта держитесь на расстоянии от блока питания, так как если перепутали полярность подключения, то конденсатор снова "хлопнет". При этом электролит может попасть в глаза. Это крайне опасно! При возможности стоит одеть защитные очки.

А теперь расскажу о "граблях", на которые лучше не наступать.

Перед тем, как что-то менять, нужно тщательно очистить плату и элементы схемы от жидкого электролита. Занятие это не из приятных.

Дело в том, что когда электролитический конденсатор хлопает, то электролит внутри его вырывается наружу под большим давлением в виде брызг и пара. Он же в свою очередь моментально конденсируется на расположенных рядом деталях, а также на элементах алюминиевого радиатора.

Поскольку монтаж элементов очень плотный, а сам корпус маленький, то электролит попадает в самые труднодоступные места.

Конечно, можно схалтурить, и не вычищать весь электролит, но это чревато проблемами. Фишка в том, что электролит хорошо проводит электрический ток. В этом я убедился на собственном опыте. И хотя блок питания я вычистил очень тщательно, но вот выпаивать дроссель и чистить поверхность под ним не стал, поторопился.

В результате после того, как блок питания был собран и подключен к электросети, он заработал исправно. Но спустя минуту-две внутри корпуса что-то затрещало, и индикатор питания потух.

После вскрытия оказалось, что остатки электролита под дросселем замкнули цепь. Из-за этого перегорел плавкий предохранитель Т3.15А 250V по входной цепи 220V. Кроме этого в месте замыкания всё было покрыто копотью, а у дросселя отгорел провод, который соединял его экран и общий провод на печатной плате.

Тот самый дроссель. Перегоревший провод восстановил.

Копоть от замыкания на печатной плате прямо под дросселем.

Как видим, шарахнуло прилично.

В первый раз предохранитель я заменил новым из аналогичного блока питания. Но, когда он сгорел второй раз, я решил его восстановить. Вот так выглядит плавкий предохранитель на плате.

А вот что у него внутри. Сам он легко разбирается, нужно лишь отжать защёлки в нижней части корпуса и снять крышку.

Чтобы его восстановить, нужно убрать остатки выгоревшей проволоки и остатки изоляционной трубки. Взять тонкий провод и припаять его на место родного. Затем собрать предохранитель.

Кто-то скажет, что это "жучок". Но я не соглашусь. При коротком замыкании выгорает самый тонкий провод в цепи. Иногда выгорают даже медные дорожки на печатной плате. Так что в случае чего наш самопальный предохранитель сделает своё дело. Конечно, можно обойтись и перемычкой из тонкого провода напаяв её на контактные пятаки на плате.

В некоторых случаях, чтобы вычистить весь электролит может потребоваться демонтаж охлаждающих радиаторов, а вместе с ними и активных элементов вроде MOSFET-транзисторов и сдвоенных диодов.

Как видим, под моточными изделиями, вроде дросселей, также может остаться жидкий электролит. Даже если он высохнет, то в дальнейшем из-за него может начаться коррозия выводов. Наглядный пример перед вами. Из-за остатков электролита полностью корродировал и отвалился один из выводов конденсатора во входном фильтре. Это один из адаптеров питания от ноута, что побывал у меня в ремонте.

Вернёмся к нашему блоку питания. После чистки от остатков электролита и замены конденсатора необходимо проверить его не подключая к ноутбуку. Замерить выходное напряжение на выходном штекере. Если всё в порядке, то производим сборку адаптера питания.

Надо сказать, что дело это весьма трудоёмкое. Сперва.

Охлаждающий радиатор блока питания состоит из нескольких алюминиевых пластин. Между собой они крепятся защёлками, а также склеены чем-то напоминающим силиконовый герметик. Его можно убрать перочинным ножом.

Верхняя крышка радиатора крепится к основной части на защёлки.

Нижняя пластина радиатора фиксируется к печатной плате пайкой, как правило, в одном или двух местах. Между ней и печатной платой помещается изоляционная пластина из пластика.

Пару слов о том, как скрепить две половинки корпуса, которые в самом начале мы распиливали лобзиком.

В самом простейшем случае можно просто собрать блок питания и обмотать половинки корпуса изолентой. Но это не самый лучший вариант.

Для склейки двух пластиковых половинок я использовал термоклей. Так как термопистолета у меня нет, то ножом срезал кусочки термоклея с трубки и укладывал в пазы. После этого брал термовоздушную паяльную станцию , выставлял градусов около 200~250 0 C. Затем прогревал феном кусочки термоклея до тех пор, пока они не расплавились. Излишки клея убирал зубочисткой и ещё раз обдувал феном паяльной станции.

Желательно не перегревать пластик и вообще избегать чрезмерного нагрева посторонних деталей. У меня, например, пластик корпуса начинал светлеть при сильном прогреве.

Несмотря на это получилось весьма добротно.

Теперь скажу пару слов и о других неисправностях.

Кроме таких простых поломок, как хлопнувший конденсатор или обрыв в соединительных проводах, встречаются и такие, как обрыв вывода дросселя в цепи сетевого фильтра. Вот фото.

Казалось бы, дело плёвое, отмотал виток и запаял на место. Но вот на поиск такой неисправности уходит море времени. Обнаружить её удаётся не сразу.

Наверняка уже заметили, что крупногабаритные элементы, вроде того же электролитического конденсатора, дросселей фильтра и некоторых других деталей замазаны чем-то вроде герметика белого цвета. Казалось бы, зачем он нужен? А теперь понятно, что с его помощью фиксируются крупные детали, которые от тряски и вибраций могут отвалиться, как этот самый дроссель, что показан на фото.

Кстати, первоначально он не был надёжно закреплён. Поболтался - поболтался, и отвалился, унеся жизнь ещё одного блока питания от ноутбука.

Подозреваю, что от таких вот банальных поломок на свалку отправляются тысячи компактных и довольно мощных блоков питания!

Для радиолюбителя такой импульсный блок питания с выходным напряжением 19 - 20 вольт и током нагрузки 3-4 ампера просто находка! Мало того, что он очень компактный, так ещё и довольно мощный. Как правило, мощность адаптеров питания составляет 40 ~ 90 Вт.

К большому сожалению, при более серьёзных неисправностях, таких как, выход из строя электронных компонентов на печатной плате, ремонт осложняет то, что найти замену той же микросхеме ШИМ-контроллера довольно трудно.

Даже найти даташит на конкретную микросхему не удаётся. Кроме всего прочего ремонт осложняет обилие SMD-компонентов, маркировку которых либо трудно считать или невозможно приобрести замену элементу.

Стоит отметить, что подавляющее большинство адаптеров питания ноутбуков выполнены весьма качественно. Это видно хотя бы по наличию моточных деталей и дросселей, которые установлены в цепи сетевого фильтра. Он подавляет электромагнитные помехи. В некоторых низкокачественных блоках питания от стационарных ПК такие элементы вообще могут отсутствовать.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «minomin.ru» — Сайт о компьютерах, и работе в интернете